Quantitative Phase Field に要求される機能の検討

弊社開発に対する機能追加と修正に関して

Fe-(X)-Cを題材に

Fe-(X)-Cを例に、そこに存在するい くつかの相について支配的な生成・ 成長の機構を検討し、それを定量 的にSimulateするのに要求される Phase Field Methodの要素を確認 する。

Fe-(X)-Cのいくつかの相

- Allotriomorphic Ferrite
- Idiomorphic Ferrite
- Widmanstatten Ferrite
- Bainite
- Carbide
- Martensite

Allotriomorphic Ferrite

Growth 1 interface

InterfaceはIncoherentである。 Martensiteに見られるような母体のmatrixの 結晶方位との相関はほとんどないらしい。 FeあるいはXのmobilityが高温で十分大きい ことからreconstructiveなどとして分類している。 (H.K.D.H.Bhadeshia)

弾性エネルギーは流体的に取り扱う。 (Austeniteの密度 > Ferriteの密度) 任意の結晶方位の間の界面における 表面エネルギーの評価が必要。

CALPHADのデータを修正して 界面エネルギーを適切に取り込む必要がある。

Austeniteのgrain boundaryのSurafce energyは界面方向のgrowthをdriveする?

Indiomorphic Ferrite

Indiomorphic Ferrite tend to nucleate heterogeneously on nonmetallic inclusions present in the steel.(H.K.D.H.Bhadeshia)

growth をdriveするmechanismは Allotriomorphic Ferriteとほとんど同じ。 (Reconstructive diffusion)

追加を要する機能 1

- Environment dependentなNucleation機能
- 任意の相間の任意のorientation, inclenation
 関係に対応する表面エネルギーの組み込み
- 母体matrixのmobilityが高く、inclusionの strainのshear成分を考慮しなくてよい場合 (?)のelastic energyの組み込み

Widmanstatten Ferrite

From H.K.D.H.Bhadeshia

2つのMartensite plateが協調的に成長することで歪みエネルギーを緩和する

比較的高温(Ferriteにとっては小さいdriving force)にもかかわらずdisplaciveな martensiteが形成できるmechanismを与える。(H.K.D.H.Bhadeshia)

追加を要する機能 2

- Martensite phaseの導入
 - habit plane orientation relationships simple shear
 - uniaxial strain
 - surface energy
 - で特徴付けられるphaseを定義して歪み弾性 エネルギーを正確に評価する。
- Simultaneous and cooperative formation of a pair of adjacent,self-accomodating plates の組み込み。

bainite

Surface relief due to a bainite sub-unit

Bainite sheafの時間発展

追加を要する機能 3

- plastic deformationあるいはtwinsなども含めて扱うにはmicromechanicsの手法を取り込む必要がある。支配的なフェーズの時間、空間のオーダとmicromechanicsで扱われる現象の時間、空間のオーダを吟味して連成させる必要がある。
- Nucleation siteならびに上記 micromechanicsの関係でdislocation等の dynamicsも考慮する必要がありそう。

付録1 Phase diagramの概略

付録3 Feの結晶構造

- α Ferrite BCC構造 室温~760°C
- β Ferrite BCC構造 760°C~910°C
- γ Austenite FCC構造 910°C~1400°C
- δ Ferrite BCC構造

 $1400^{\circ}C \sim 1539^{\circ}C$

BCC 密度 小 FCC 密度 大

付録4 Coherent inclusion

付録5 Martensite Transformation

Invariant plane strain

付録6 Typical energies associated with martensitic transformation

- Strain energy 600J/mol
- Twin interface energy 100J/mol
- γ / α' interface energy 1J/mol
- Stored energy due to dislocations 20J/mol